Abelian varieties of Weil type and Kuga-Satake varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Varieties of Weil Type and Kuga-satake Varieties

We analyze the relationship between abelian fourfolds of Weil type and Hodge structures of type K3, and we extend some of these correspondences to the case of arbitrary dimension.

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

Real multiplication on K3 surfaces and Kuga Satake varieties

The endomorphism algebra of a K3 type Hodge structure is a totally real field or a CM field. In this paper we give a low brow introduction to the case of a totally real field. We give existence results for the Hodge structures, for their polarizations and for certain K3 surfaces. We consider the Kuga Satake variety of these Hodge structures and we discuss some examples. Finally we indicate vari...

متن کامل

Torsion of Abelian Varieties, Weil Classes and Cyclotomic Extensions

Let K ⊂ C be a field finitely generated over Q, K(a) ⊂ C the algebraic closure of K, G(K) = Gal(K(a)/K its Galois group. For each positive integer m we write K(μm) for the subfield of K(a) obtained by adjoining to K all mth roots of unity. For each prime l we write K(l) for the subfield of K(a) obtained by adjoining to K all l−power roots of unity. We write K(c) for the subfield of K(a) obtaine...

متن کامل

On the Structure of Weil Restrictions of Abelian Varieties

We give a description of endomorphism rings of Weil restrictions of abelian varieties with respect to finite Galois extensions of fields. The results are applied to study the isogeny decompositions of Weil restrictions. 2000 Mathematics Subject Classification Primary: 14K15, Secondary: 11G10.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2001

ISSN: 0040-8735

DOI: 10.2748/tmj/1178207420